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A LEARNING TRAJECTORY FOR EQUIPARTITIONING

Equipartioning can be characterized as follows:

* Equipartitioning (or splitting) indicates cognitive behaviors that have
the goal of producing equal-size groups (from collections) or pieces
(from continuous wholes) as “fair shares” for each of a set of indi-
viduals.

e Equipartitioning is not breaking, fracturing, fragmenting, or seg-
menting in which there is the creation of unequal parts.

¢ Equipartitioning is the foundation of division and multiplication, ra-
tio, rate, and fraction (Confrey et al., 2009).

Originally, equipartitioning was not one of the learning trajectories
we planned for rational number reasoning; those included five concept
areas: (1) multiplication and division; (2) length and area; (3) fraction,
ratio, and rate; (4) decimals and percent; and (5) similarity and scaling.
However, based on the map of rational number reasoning (Figure 3.5),
we determined first to identify research related to the construct of split-
ting, or partitioning, as this had been previously identified as a fundamen-
tal construct for multiplicative reasoning (Confrey, 1988). In reviewing the
literature, and based on prior work on splitting (Confrey, 1988, 1994; Con-
frey & Scarano, 1995), we recognized that a substantial body of knowledge
supported a key role for fair sharing in young children (Confrey, Maloney,
Nguyen et al., 2008; Confrey et al., 2009). This literature began with studies
of young children sharing collections (Hunting & Sharpley, 1991; Pepper,
1991) and a whole (Confrey et al., 2009; Empson & Turner, 2006; Pothier &
Sawada, 1983) but also included studies of older children sharing multiple
wholes (Charles & Nason, 2000; Lamon, 1996; Toluk & Middleton, 2003).
The body of research spanned investigations into a variety of topics in early
mathematics, including partitioning itself, one-to-one correspondence and
counting, and fractions. However, no one had conducted a fair-sharing
case-based analysis of this literature, which Confrey undertook based on
her conjecture that the concept of splitting developed in parallel (indepen-
dently, but intertwined) with that of counting. This belief led to a proposal
of three cases for analysis as the basis for rational number reasoning: eq-
uipartitioning collections (Case A), single wholes (Case B), and multiple
wholes to produce a proper fraction or an improper fraction/mixed num-
ber (Case C).!
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COGNITIVE ELEMENTS OF THE EQUIPARTITIONING
LEARNING TRAJECTORY: A FRAMEWORK FOR
UNDERSTANDING

From the analysis of clinical interviews, a framework for the cognitive ele-
ments was identified that could be applied across the cases. It employed a
parallel structure to capture what students have learned within and among
the cases. This framework of cognitive elements facilitates capturing the
process of movement within and between the proficiency levels. The devel-
opment of this combination of processes accounts for the generative learn-
ing progress through the proficiency levels, a key to the construction of
learning trajectories.

An underlying structure for students’ accomplishments emerged, de-
scribed as a “framework for understanding” (Confrey, Maloney, Wilson, &
Nguyen, 2010):

1. Strategies used to solve the problems
Mathematical reasoning practices used to explain the strategies
and solutions, including naming the results of tasks and justifying

them

3. Emergent mathematical relations or properties, which act as local
generalizations to guide future approaches

4. Systematic tendencies toward certain errors or misconceptions
(and their resolutions)

5. Broader generalizations of increasing mathematical power.

Below, these five cognitive elements are illustrated, with excerpts from clini-
cal interviews.

Strategies

Rayna, a second-grade student, was asked to share a pile of coins (“pi-
rates’ treasure”) fairly between two pirates. Her strategy was to separate the
coins into two piles by dealing one coin to one pirate, then one coin to the
other pirate, round by round until all the coins were distributed. She was
not completely systematic, however: While she dealt one coin to each pirate
on each round, sometimes the first coin of the round went to the left pile,
and sometimes the first coin went to the right pile. Nonetheless, when she
was asked how she knew each pirates has a fair share of the treasure, she
placed two coins in the middle of the table and explained, “If you have one
on this side [sliding one coin to her right] and one on this side [sliding the
second coin to her left], it’s even because each of them has one.” Rayna’s
strategy accomplished the goal of the challenge, and she explained her
strategy in ways that were consistent with behavior observed in the inter-
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view, namely, dealing in one-to-one correspondence from the original pile
of coins to each of the recipient piles.

Mathematical Reasoning Practices

The following excerpt demonstrates the development of the mathemati-
cal practice of justification in the context of reallocating pirate treasure to
ensure a fair share for the remaining pirates when one of the pirates de-
parts (uncharacteristically leaving his share of the treasure behind). Emma,
age b, had just successfully shared 24 coins among four pirates, producing 6
coins per pirate, arranged in 2-by-3 arrays (Figure 3.6a). She was then asked
if she could share the whole treasure fairly among three pirates—if one pi-
rate sailed away without his treasure. She thought briefly, then collected all
the coins into a single large pile on the table in front of her (Figure 3.6b)

Student: Okay. How much cents are there when three pirates do
not have any money? Zero cents! [She then assembles a
2-by-4 array of coins for one pirate, without audibly count-
ing, and an identical array for the second pirate. As she
completes the second array, she says] I'm using eight. [She
then creates a row of 5 coins and a row of 3 coins for the
third pirate, but looks a little perplexed.]

S: Oh no! He [pointing to the row of 3 coins for the third pi-
rate], he has less ... Wait. [counts the two rows, which has
5 coins in one row and 3 in the other, and moves one coin
from the longer row over to the shorter row, producing
a third 2-by-4 array] They all have 8. Eight was the magic

number!
Interviewer: How did you know they each got the same amount?
S: Okay. Last time it was 6 [touches one or two rows of the ar-

ray of 8, and rests index finger of each hand on the top row
of the array] and I just added 2 more because he [pointing
to where the original fourth pirate’s pile of 6 coins had
been] had 6, and I added 2 more to each one [sweep-
ing her hand quickly over the other pirates’ piles] which
makes 6. One, two ... three, four ... five, six [tapping in
turn the two coins at the far end of each of the 3 arrays] ...
so I thought that eight was the magic number (Figure 3.6¢).

This example illustrates what we believe is a step in the evolution of chil-
dren’s understanding of compensation, from qualitative to quantitative
compensation. Qualitative compensation refers to children’s recognition
or belief that if more (or fewer) people share a quantity (a collection of
objects, or a single object that can be shared) than had initially shared it,
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FIGURE 3.6a. Emma has shared 24 coins fairly among 4 pirates

FIGURE 3.6b. After one pirate left the island, Emma collected all 24 coins into a
single pile

FIGURE 3.6¢c. Emma has constructed three 2-by-4 arrays of coins

FIGURE 3.6. Equipartitioning and reallocation with justification, a mathematical
reasoning practice
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then each person’s share will be less (or more). By comparison, quantita-
tive compensation encompasses children’s abilities to predict, demonstrate,
explain, and justify with specific quantitative arguments, the relationship
between changes in the number of persons sharing and the changes in the
sizes of the shares. In this episode, Emma reassembled the entire collec-
tion, as though she were going to deal the three pirates’ shares anew, but
then directly constructed three 2-by-4-coin arrays, one for each of the three
remaining pirates, in order. Then she explains that 8 was the “magic num-
ber,” explaining that she got the eight by adding two coins to each of the
original shares, and furthermore, that the two coins for each of the pirates
came from the original 6 coins from the pirate who departed: “I just added
2 more because he had 6 [indicating with her hand the pirate who left the
island] [and] I added 2 more, which makes 6,” making the direct connec-
tion between the 6 coins of the share of the pirate who left, and two more
coins for each of the remaining three pirates, to share all six of those coins
evenly among the other three pirates.

Emergent Relations and Properties

Emergent properties are exemplified by students becoming aware of a
relationship within or property of mathematical structure that can assist
them in solving more complex tasks. This example illustrates how the math-
ematical practice of justification becomes incorporated into other levels of
proficiencies along the learning trajectory. Evan, a second grader, had been
asked to share a play-dough rectangle fairly for four people. Stating that he
was “ just gonna do this the hardest way there is,” he cut the rectangle along
both diagonals (Figure 3.7a), comparing this to his depiction of the way
“most people” would think of doing it (i.e., making parallel cuts, as shown
in Figures 3.7b).

Of the four triangles that result from the diagonal cuts, the opposite
pairs of triangles are congruent, but adjacent pairs of triangles are not.
We have observed repeatedly that children often initially believe that fair
shares must be congruent. Even very young children readily recognize that
a rectangular cake can be shared fairly between two persons by cutting it
across the diagonal, because the resulting pieces are “the same.” If asked
to share the same rectangle fairly for four persons, many children will draw
the second diagonal, but when asked how they know the four parts are fair
shares, they often reply that the four parts are not the same. Many students
will then argue that the pieces are fair (i.e., equal) because two of the tri-
angles are shorter and fatter while the other two are taller and skinnier;
this is a qualitative compensation-based justification. Evan, however, made
an argument that approached an informal geometric proof. He formed a
parallelogram from each pair of opposite triangles by adjoining them along
the original rectangle’s (opposite) sides, as in Figures 3.8b and 3.8c. Evan
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FIGURE 3.7a. Evan’s diagonal splitof ~ FIGURE 3.7b. Evan’s split of a cake
a cake into four pieces into four parallel pieces

FIGURE 3.7. Equipartitioning a rectangular cake for four persons

stated in turn that the parallelograms (Figures 3.8b and 3.8c) each had two
fair shares.

Then he placed triangles C and triangle D next to each other, and ar-
gued (qualitative compensation) that C was taller, and D was shorter and
fatter, and that they were the same. Evan’s argument had some resemblance
to the transitive property of equality for numerical situations: the parallelo-
grams are the same, they are each split in two equally parts, and therefore
the halves of each parallelogram are equal to each other. In similar ways,
at a relatively sophisticated level, students will assert the equivalence of two
parts based on the fact that if two areas are congruent and they are equipar-
titioned into the same number of parts, the parts must be equivalent; we re-
fer to this emergent relationship as the property of equality of equipartitioning,
or PEEQ. It facilitates children solving a wide array of tasks in which equiva-
lence of shares does not depend on geometric congruence of the shares. A
second, less complex example of PEEQ) is displayed in the top proficiency
level of the assessment item shown in Figure 11.

Such emergent properties go beyond the development of strategies or
mathematical reasoning practices. They appear to function for students

B D
A C
b B
FIGURE 3.8a. Evan’s FIGURE 3.8b. Evan’s FIGURE 3.8c. Evan’s
diagonal 4-split with right and left triangles upper and lower tri-
pieces marked for ease joined to form a paral- angles joined to form a
of recognition lelogram congruent parallelogram

FIGURE 3.8. Property of equality of equipartitioning: Evan’s demonstration of the
equivalence of the four diagonally cut shares
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as “local” generalizations that permit them to approach a broad range of
tasks effectively and efficiently. They often incorporate initial strategies and
methods of justification into more general principles or conjectures that
are useful in capturing the underlying structures in the mathematics.

Misconceptions

As illustrated previously in the conceptual corridor (Figure 3.1), the
cognitive elements of mathematical reasoning also include obstacles that
students are likely to encounter and which they must resolve in order to
lay the groundwork for later acquisition of more advanced concepts. One
key obstacle, an additive misconception in the context of orthogonal splits,
commonly surfaces when children explore a variety of ways to equiparti-
tion rectangles. It is common for children to initially assume that the total
number of parts produced from splitting into m parts along one side (for
instance, splitting the rectangle vertically into m parts) and then along the
perpendicular side with an n-split (horizontally into n parts) will be m + n.
Coming to understand that the total number of parts is actually m x n—be-
cause each of the horizontal cuts acts on all of the m vertically cut parts to
produce m x n parts (or vice versa)—represents a fundamental means of
resolving the additive misconceptions.

A first-grader, Kate, was asked to find a way to share a rectangle among
six persons other than by making all horizontal or all vertical parallel cuts.
On her first attempt, she made a vertical 3-split and a horizontal 3-split; that
is, she cut the rectangular play-dough cake into three equal parts vertically
and three equal parts horizontally (Figure 3.9a). Upon counting the parts,
she realized that this made nine parts instead of six. At first she saw no
way to resolve the problem, but with encouragement tried again. She split
the rectangle horizontally into three parts again, then made a vertical cut
about one third of the way across. She scored it lightly about two thirds of
the way across the rectangle, and prepared to split it again vertically (Figure
3.9b). Had she continued, she would again have made nine pieces. Then
she paused and considered this work intently. She used her fingers to seal
(“erase”) the first cut, and to smooth out the score mark two thirds of the
way across the rectangle, and then simply cut the cake in half vertically.
Counting to verify she had obtaining the desired six parts (Figure 3.9¢),
she sat back smiling. She had effectively figured out how to split the first
(horizontal) 3-split by a second (vertical) 2-split to produce six fair shares.
This splitting of splits is called composition of splits.? It represents a key step
toward the roots of multiplication.
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Scored, then Cut, then
smoothed over re-sealed

FIGURE 3.9a. Kate’s FIGURE 3.9b. Kate's FIGURE 3.9c. Finally,

first result of attempting second try at sharing the on the third try, a 2-by-3
sharing a rectangle fairly rectangle for 6 six-split composed suc-
for 6 without making cessfully

parallel cuts

FIGURE 3.9. Composition of splits

Generalization

In an interview involving Case C equipartitioning (i.e., multiple whole
dissectible items shared among multiple persons) and a setting in which
the number of items was fewer than the number of people sharing, fifth
grader Ellie explored several tasks. One of these was to share two pizzas
(construction-paper circles) among three persons.

She first equipartitioned each circle into 3 parts by drawing three radii
on each circle, then cut the thirds apart (Figure 3.10a). Then she dealt the
parts of the circles into three piles of two pieces each, saying, “There we go
... They each get ... all of these are thirds of one whole pizza. So they're
each getting [for each pair of pieces, she places the two pieces adjacent to
each other along matching sides, to form two thirds of a single pizza] two
thirds of one whole pizza. But, [each person’s share is] a third, wait, we
know, yes, a third, of two pizzas” (Figure 3.10b).

&

FIGURE 3.10a. Ellie’s mark-all strategy: FIGURE 3.10b.  After dealing the six
split each whole into three parts, one for  pieces into three equal (fair) shares
each of the three people sharing

FIGURE 3.10. Generalization of equipartitioning a items for b people
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Ellie’s strategy is one known as mark-all (Lamon, 1996). She recognized
that for multiple wholes, even though her strategy for making a set of fair
shares involves splitting each whole into the same number of parts as peo-
ple, the final share per person is nonetheless represented by the unit frac-
tion 1/n (n = the number of persons) of the original collection of pizzas.
But her generalization also recognizes two equivalent ways of answering,
depending on the unit to which she refers (i.e., the “referent unit”): Each
person’s share is one third of the original total amount of pizza, as well as two
thirds of a single pizza.

REPRESENTING PROFICIENCY LEVELS AND TASK CLASSES

Delineating the variety of cognitive reasoning elements in our framework,
combined with the three cases, led us to propose the current form of our
learning trajectory. The learning trajectory for equipartitioning is proving
to be foundational for the development of the whole rational number rea-
soning space under construction. We argue that it is foundational because
through our research we are demonstrating how the roots of division and
multiplication sit within the trajectory, with key links to geometric ideas of
length, area, similarity, and scaling. Further, we are demonstrating in re-
lated work the key linkages between this work and the development of frac-
tions, ratio relations, and the construct of a/b-as-operator. We claim that
these three key ideas form the primary structures necessary for a robust
understanding of rational number reasoning (Confrey, Maloney, Nguyen
etal., 2008; Confrey et al., 2009).

A vertical display of learning trajectory proficiency levels was developed
to incorporate the three cases of equipartitioning, as well as precise state-
ments of the knowledge and skills that we conjectured should accrue to stu-
dents through successfully solving case-specific challenges. Table 3.1 delin-
eates the 16 proficiency levels® of the equipartitioning learning trajectory,
listed from less sophisticated at the bottom to more sophisticated at the top.

For each proficiency level the outcome space, an ordered list (also or-
dered from least to most sophisticated) combined student reasoning results
we had observed in the clinical interviews and predictions of those we ex-
pected as we expanded the tasks into assessment items. The outcome spaces
are designed (again, iteratively) to convey sufficient detail to understand
the cognitive behaviors associated with the proficiency level. They served to
guide the development of paper-and-pencil assessment items.

To ensure consideration of student understanding across the range
of equipartitioning cases and across the K through 7 grade levels, a two-
dimensional display of proficiency levels and task types was added. The
proficiency levels in one dimension were arrayed with a second dimension
known as task classes (Table 3.2).
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