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A LEARNING TRAJECTORY FOR EQUIPARTITIONING

Equipartioning can be characterized as follows:

• Equipartitioning (or splitting) indicates cognitive behaviors that have 
the goal of producing equal-size groups (from collections) or pieces 
(from continuous wholes) as “fair shares” for each of a set of indi-
viduals.

• Equipartitioning is not breaking, fracturing, fragmenting, or seg-
menting in which there is the creation of unequal parts.

• Equipartitioning is the foundation of division and multiplication, ra-
tio, rate, and fraction (Confrey et al., 2009).

Originally, equipartitioning was not one of the learning trajectories 
we planned for rational number reasoning; those included fi ve concept 
areas: (1) multiplication and division; (2) length and area; (3) fraction, 
ratio, and rate; (4) decimals and percent; and (5) similarity and scaling. 
However, based on the map of rational number reasoning (Figure 3.5), 
we determined fi rst to identify research related to the construct of split-
ting, or partitioning, as this had been previously identifi ed as a fundamen-
tal construct for multiplicative reasoning (Confrey, 1988). In reviewing the 
literature, and based on prior work on splitting (Confrey, 1988, 1994; Con-
frey & Scarano, 1995), we recognized that a substantial body of knowledge 
supported a key role for fair sharing in young children (Confrey, Maloney, 
Nguyen et al., 2008; Confrey et al., 2009). This literature began with studies 
of young children sharing collections (Hunting & Sharpley, 1991; Pepper, 
1991) and a whole (Confrey et al., 2009; Empson & Turner, 2006; Pothier & 
Sawada, 1983) but also included studies of older children sharing multiple 
wholes (Charles & Nason, 2000; Lamon, 1996; Toluk & Middleton, 2003). 
The body of research spanned investigations into a variety of topics in early 
mathematics, including partitioning itself, one-to-one correspondence and 
counting, and fractions. However, no one had conducted a fair-sharing 
case-based analysis of this literature, which Confrey undertook based on 
her conjecture that the concept of splitting developed in parallel (indepen-
dently, but intertwined) with that of counting. This belief led to a proposal 
of three cases for analysis as the basis for rational number reasoning: eq-
uipartitioning collections (Case A), single wholes (Case B), and multiple 
wholes to produce a proper fraction or an improper fraction/mixed num-
ber (Case C).1
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COGNITIVE ELEMENTS OF THE EQUIPARTITIONING 
LEARNING TRAJECTORY: A FRAMEWORK FOR 

UNDERSTANDING

From the analysis of clinical interviews, a framework for the cognitive ele-
ments was identifi ed that could be applied across the cases. It employed a 
parallel structure to capture what students have learned within and among 
the cases. This framework of cognitive elements facilitates capturing the 
process of movement within and between the profi ciency levels. The devel-
opment of this combination of processes accounts for the generative learn-
ing progress through the profi ciency levels, a key to the construction of 
learning trajectories.

An underlying structure for students’ accomplishments emerged, de-
scribed as a “framework for understanding” (Confrey, Maloney, Wilson, & 
Nguyen, 2010):

1. Strategies used to solve the problems
2. Mathematical reasoning practices used to explain the strategies 

and solutions, including naming the results of tasks and justifying 
them

3. Emergent mathematical relations or properties, which act as local 
generalizations to guide future approaches

4. Systematic tendencies toward certain errors or misconceptions 
(and their resolutions)

5. Broader generalizations of increasing mathematical power.

Below, these fi ve cognitive elements are illustrated, with excerpts from clini-
cal interviews.

Strategies

Rayna, a second-grade student, was asked to share a pile of coins (“pi-
rates’ treasure”) fairly between two pirates. Her strategy was to separate the 
coins into two piles by dealing one coin to one pirate, then one coin to the 
other pirate, round by round until all the coins were distributed. She was 
not completely systematic, however: While she dealt one coin to each pirate 
on each round, sometimes the fi rst coin of the round went to the left pile, 
and sometimes the fi rst coin went to the right pile. Nonetheless, when she 
was asked how she knew each pirates has a fair share of the treasure, she 
placed two coins in the middle of the table and explained, “If you have one 
on this side [sliding one coin to her right] and one on this side [sliding the 
second coin to her left], it’s even because each of them has one.” Rayna’s 
strategy accomplished the goal of the challenge, and she explained her 
strategy in ways that were consistent with behavior observed in the inter-
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view, namely, dealing in one-to-one correspondence from the original pile 
of coins to each of the recipient piles.

Mathematical Reasoning Practices

The following excerpt demonstrates the development of the mathemati-
cal practice of justifi cation in the context of reallocating pirate treasure to 
ensure a fair share for the remaining pirates when one of the pirates de-
parts (uncharacteristically leaving his share of the treasure behind). Emma, 
age 5, had just successfully shared 24 coins among four pirates, producing 6 
coins per pirate, arranged in 2-by-3 arrays (Figure 3.6a). She was then asked 
if she could share the whole treasure fairly among three pirates—if one pi-
rate sailed away without his treasure. She thought briefl y, then collected all 
the coins into a single large pile on the table in front of her (Figure 3.6b)

Student:  Okay. How much cents are there when three pirates do 
not have any money? Zero cents! [She then assembles a 
2-by-4 array of coins for one pirate, without audibly count-
ing, and an identical array for the second pirate. As she 
completes the second array, she says] I’m using eight. [She 
then creates a row of 5 coins and a row of 3 coins for the 
third pirate, but looks a little perplexed.]

S:  Oh no! He [pointing to the row of 3 coins for the third pi-
rate], he has less … Wait. [counts the two rows, which has 
5 coins in one row and 3 in the other, and moves one coin 
from the longer row over to the shorter row, producing 
a third 2-by-4 array] They all have 8. Eight was the magic 
number!

Interviewer:  How did you know they each got the same amount?
S:  Okay. Last time it was 6 [touches one or two rows of the ar-

ray of 8, and rests index fi nger of each hand on the top row 
of the array] and I just added 2 more because he [pointing 
to where the original fourth pirate’s pile of 6 coins had 
been] had 6, and I added 2 more to each one [sweep-
ing her hand quickly over the other pirates’ piles] which 
makes 6. One, two … three, four … fi ve, six [tapping in 
turn the two coins at the far end of each of the 3 arrays] … 
so I thought that eight was the magic number (Figure 3.6c).

This example illustrates what we believe is a step in the evolution of chil-
dren’s understanding of compensation, from qualitative to quantitative 
compensation. Qualitative compensation refers to children’s recognition 
or belief that if more (or fewer) people share a quantity (a collection of 
objects, or a single object that can be shared) than had initially shared it, 
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FIGURE 3.6a. Emma has shared 24 coins fairly among 4 pirates

FIGURE 3.6b. After one pirate left the island, Emma collected all 24 coins into a 
single pile

FIGURE 3.6c. Emma has constructed three 2-by-4 arrays of coins

FIGURE 3.6. Equipartitioning and reallocation with justifi cation, a mathematical 
reasoning practice

.
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then each person’s share will be less (or more). By comparison, quantita-
tive compensation encompasses children’s abilities to predict, demonstrate, 
explain, and justify with specifi c quantitative arguments, the relationship 
between changes in the number of persons sharing and the changes in the 
sizes of the shares. In this episode, Emma reassembled the entire collec-
tion, as though she were going to deal the three pirates’ shares anew, but 
then directly constructed three 2-by-4-coin arrays, one for each of the three 
remaining pirates, in order. Then she explains that 8 was the “magic num-
ber,” explaining that she got the eight by adding two coins to each of the 
original shares, and furthermore, that the two coins for each of the pirates 
came from the original 6 coins from the pirate who departed: “I just added 
2 more because he had 6 [indicating with her hand the pirate who left the 
island] [and] I added 2 more, which makes 6,” making the direct connec-
tion between the 6 coins of the share of the pirate who left, and two more 
coins for each of the remaining three pirates, to share all six of those coins 
evenly among the other three pirates.

Emergent Relations and Properties

Emergent properties are exemplifi ed by students becoming aware of a 
relationship within or property of mathematical structure that can assist 
them in solving more complex tasks. This example illustrates how the math-
ematical practice of justifi cation becomes incorporated into other levels of 
profi ciencies along the learning trajectory. Evan, a second grader, had been 
asked to share a play-dough rectangle fairly for four people. Stating that he 
was “ just gonna do this the hardest way there is,” he cut the rectangle along 
both diagonals (Figure 3.7a), comparing this to his depiction of the way 
“most people” would think of doing it (i.e., making parallel cuts, as shown 
in Figures 3.7b).

Of the four triangles that result from the diagonal cuts, the opposite 
pairs of triangles are congruent, but adjacent pairs of triangles are not. 
We have observed repeatedly that children often initially believe that fair 
shares must be congruent. Even very young children readily recognize that 
a rectangular cake can be shared fairly between two persons by cutting it 
across the diagonal, because the resulting pieces are “the same.” If asked 
to share the same rectangle fairly for four persons, many children will draw 
the second diagonal, but when asked how they know the four parts are fair 
shares, they often reply that the four parts are not the same. Many students 
will then argue that the pieces are fair (i.e., equal) because two of the tri-
angles are shorter and fatter while the other two are taller and skinnier; 
this is a qualitative compensation-based justifi cation. Evan, however, made 
an argument that approached an informal geometric proof. He formed a 
parallelogram from each pair of opposite triangles by adjoining them along 
the original rectangle’s (opposite) sides, as in Figures 3.8b and 3.8c. Evan 
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stated in turn that the parallelograms (Figures 3.8b and 3.8c) each had two 
fair shares.

Then he placed triangles C and triangle D next to each other, and ar-
gued (qualitative compensation) that C was taller, and D was shorter and 
fatter, and that they were the same. Evan’s argument had some resemblance 
to the transitive property of equality for numerical situations: the parallelo-
grams are the same, they are each split in two equally parts, and therefore 
the halves of each parallelogram are equal to each other. In similar ways, 
at a relatively sophisticated level, students will assert the equivalence of two 
parts based on the fact that if two areas are congruent and they are equipar-
titioned into the same number of parts, the parts must be equivalent; we re-
fer to this emergent relationship as the property of equality of equipartitioning, 
or PEEQ. It facilitates children solving a wide array of tasks in which equiva-
lence of shares does not depend on geometric congruence of the shares. A 
second, less complex example of PEEQ is displayed in the top profi ciency 
level of the assessment item shown in Figure 11.

Such emergent properties go beyond the development of strategies or 
mathematical reasoning practices. They appear to function for students 

FIGURE 3.7a. Evan’s diagonal split of 
a cake into four pieces

FIGURE 3.7b. Evan’s split of a cake 
into four parallel pieces

FIGURE 3.7. Equipartitioning a rectangular cake for four persons

FIGURE 3.8a. Evan’s 
diagonal 4-split with 
pieces marked for ease 
of recognition

FIGURE 3.8b. Evan’s 
right and left triangles 
joined to form a paral-
lelogram

FIGURE 3.8c. Evan’s 
upper and lower tri-
angles joined to form a 
congruent parallelogram

FIGURE 3.8. Property of equality of equipartitioning: Evan’s demonstration of the 
equivalence of the four diagonally cut shares
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as “local” generalizations that permit them to approach a broad range of 
tasks effectively and effi ciently. They often incorporate initial strategies and 
methods of justifi cation into more general principles or conjectures that 
are useful in capturing the underlying structures in the mathematics.

Misconceptions

As illustrated previously in the conceptual corridor (Figure 3.1), the 
cognitive elements of mathematical reasoning also include obstacles that 
students are likely to encounter and which they must resolve in order to 
lay the groundwork for later acquisition of more advanced concepts. One 
key obstacle, an additive misconception in the context of orthogonal splits, 
commonly surfaces when children explore a variety of ways to equiparti-
tion rectangles. It is common for children to initially assume that the total 
number of parts produced from splitting into m parts along one side (for 
instance, splitting the rectangle vertically into m parts) and then along the 
perpendicular side with an n-split (horizontally into n parts) will be m + n. 
Coming to understand that the total number of parts is actually m x n—be-
cause each of the horizontal cuts acts on all of the m vertically cut parts to 
produce m x n parts (or vice versa)—represents a fundamental means of 
resolving the additive misconceptions.

A fi rst-grader, Kate, was asked to fi nd a way to share a rectangle among 
six persons other than by making all horizontal or all vertical parallel cuts. 
On her fi rst attempt, she made a vertical 3-split and a horizontal 3-split; that 
is, she cut the rectangular play-dough cake into three equal parts vertically 
and three equal parts horizontally (Figure 3.9a). Upon counting the parts, 
she realized that this made nine parts instead of six. At fi rst she saw no 
way to resolve the problem, but with encouragement tried again. She split 
the rectangle horizontally into three parts again, then made a vertical cut 
about one third of the way across. She scored it lightly about two thirds of 
the way across the rectangle, and prepared to split it again vertically (Figure 
3.9b). Had she continued, she would again have made nine pieces. Then 
she paused and considered this work intently. She used her fi ngers to seal 
(“erase”) the fi rst cut, and to smooth out the score mark two thirds of the 
way across the rectangle, and then simply cut the cake in half vertically. 
Counting to verify she had obtaining the desired six parts (Figure 3.9c), 
she sat back smiling. She had effectively fi gured out how to split the fi rst 
(horizontal) 3-split by a second (vertical) 2-split to produce six fair shares. 
This splitting of splits is called composition of splits.2 It represents a key step 
toward the roots of multiplication.
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Generalization

In an interview involving Case C equipartitioning (i.e., multiple whole 
dissectible items shared among multiple persons) and a setting in which 
the number of items was fewer than the number of people sharing, fi fth 
grader Ellie explored several tasks. One of these was to share two pizzas 
(construction-paper circles) among three persons.

She fi rst equipartitioned each circle into 3 parts by drawing three radii 
on each circle, then cut the thirds apart (Figure 3.10a). Then she dealt the 
parts of the circles into three piles of two pieces each, saying, “There we go 
… They each get … all of these are thirds of one whole pizza. So they’re 
each getting [for each pair of pieces, she places the two pieces adjacent to 
each other along matching sides, to form two thirds of a single pizza] two 
thirds of one whole pizza. But, [each person’s share is] a third, wait, we 
know, yes, a third, of two pizzas” (Figure 3.10b).

FIGURE 3.9a. Kate’s 
fi rst result of attempting 
sharing a rectangle fairly 
for 6 without making 
parallel cuts

FIGURE 3.10a. Ellie’s mark-all strategy: 
split each whole into three parts, one for 
each of the three people sharing

FIGURE 3.9b. Kate’s 
second try at sharing the 
rectangle for 6

FIGURE 3.10b. After dealing the six 
pieces into three equal (fair) shares

FIGURE 3.9c. Finally, 
on the third try, a 2-by-3 
six-split composed suc-
cessfully

FIGURE 3.9. Composition of splits

FIGURE 3.10. Generalization of equipartitioning a items for b people
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Ellie’s strategy is one known as mark-all (Lamon, 1996). She recognized 
that for multiple wholes, even though her strategy for making a set of fair 
shares involves splitting each whole into the same number of parts as peo-
ple, the fi nal share per person is nonetheless represented by the unit frac-
tion 1/n (n = the number of persons) of the original collection of pizzas. 
But her generalization also recognizes two equivalent ways of answering, 
depending on the unit to which she refers (i.e., the “referent unit”): Each 
person’s share is one third of the original total amount of pizza, as well as two 
thirds of a single pizza.

REPRESENTING PROFICIENCY LEVELS AND TASK CLASSES

Delineating the variety of cognitive reasoning elements in our framework, 
combined with the three cases, led us to propose the current form of our 
learning trajectory. The learning trajectory for equipartitioning is proving 
to be foundational for the development of the whole rational number rea-
soning space under construction. We argue that it is foundational because 
through our research we are demonstrating how the roots of division and 
multiplication sit within the trajectory, with key links to geometric ideas of 
length, area, similarity, and scaling. Further, we are demonstrating in re-
lated work the key linkages between this work and the development of frac-
tions, ratio relations, and the construct of a/b-as-operator. We claim that 
these three key ideas form the primary structures necessary for a robust 
understanding of rational number reasoning (Confrey, Maloney, Nguyen 
et al., 2008; Confrey et al., 2009).

A vertical display of learning trajectory profi ciency levels was developed 
to incorporate the three cases of equipartitioning, as well as precise state-
ments of the knowledge and skills that we conjectured should accrue to stu-
dents through successfully solving case-specifi c challenges. Table 3.1 delin-
eates the 16 profi ciency levels3 of the equipartitioning learning trajectory, 
listed from less sophisticated at the bottom to more sophisticated at the top.

For each profi ciency level the outcome space, an ordered list (also or-
dered from least to most sophisticated) combined student reasoning results 
we had observed in the clinical interviews and predictions of those we ex-
pected as we expanded the tasks into assessment items. The outcome spaces 
are designed (again, iteratively) to convey suffi cient detail to understand 
the cognitive behaviors associated with the profi ciency level. They served to 
guide the development of paper-and-pencil assessment items.

To ensure consideration of student understanding across the range 
of equipartitioning cases and across the K through 7 grade levels, a two-
dimensional display of profi ciency levels and task types was added. The 
profi ciency levels in one dimension were arrayed with a second dimension 
known as task classes (Table 3.2).
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